
The Knowledge Engineering Review, Vol. 24:1, 23–40. & 2009, Cambridge University Press
doi:10.1017/S0269888909000125 Printed in the United Kingdom

Effective use of ontologies in software
measurement

F É L I X GARC Í A 1 , F RANC I S CO RU I Z 1 , C ORAL CALERO 1 ,
MANUEL F . B ERTOA 2 , ANTON IO VALL EC I L LO 2 ,
B EATR I Z MORA 1 and MARIO PIATTINI 1

1Alarcos Research Group—Institute of Information Technologies & Systems, Department of Information Technologies &

Systems—Escuela Superior de Informática, University of Castilla-La Mancha, Spain;

e-mail: Felix.Garcia@uclm.es, Francisco.RuizG@uclm.es, Coral.Calero@uclm.es, Beatriz.Mora@uclm.es, Mario.Piattini@uclm.es
2Departamento de Lenguajes y Ciencias de la Computación, Universidad de Málaga. 29071 Málaga, España, Spain;

e-mail: bertoa@lcc.uma.es, av@lcc.uma.es

Abstract

Ontologies are frequently used in the context of software and technology engineering. These can

be grouped into two main categories, depending on whether they are used to describe the

knowledge of a domain (domain ontologies) or whether they are used as software artifacts in

software development processes. This paper presents some experiences and lessons learnt from the

effective use of an ontology for Software Measurement, called software measurement ontology

(SMO). The SMO was developed some years ago as a result of a thorough analysis of the software

measurement domain. Its use as a domain ontology is presented first, a description of how the

SMO can serve as a conceptual basis for comparing international standards related to software

measurement. Second, the paper describes several examples of the applications of SMO as a

software artifact. In particular, we show how the SMO can be instantiated to define a data quality

model for Web portals, and also how it can be used to define a Domain-Specific Language (DSL)

for measuring software entities. These examples show the significant role that ontologies can play

as software artifacts in the realm of model-driven engineering and domain-specific modeling.

1 Introduction

In recent years, we have witnessed the evolution of software production from a near-craft activity

to its formalization as a new engineering discipline. However, software engineering, when com-

pared with other well-established engineering fields, suffers from some of the problems of any

relatively young discipline. This is especially true for software measurement, one of the software

engineering fields that is gradually acquiring more relevance and attracting increased interest, but

which is still evolving and has not yet fully matured.

The difficulty of measuring software lies in its intangible nature and on the fact that its

production costs depend on both the engineering processes and the product design. In addition,

software measurement is still in the phase in which terminology, principles, and methods are being

defined, consolidated, and agreed upon. In particular, there is no consensus yet on the concepts

and terminology used in this field.

The first step then is to try to formalize and agree on the vocabulary and concepts used in the

measurement of software products and processes. Terms such as ‘measure’, ‘measurement’, or ‘attribute’

do not have a uniform definition accepted by all software measurement researchers and practitioners.

Other terms such as ‘metric’, used to refer to the measuring of a product property, are used only in the

context of software measurement, and differ from the terms commonly used in other scientific areas.

One way to achieve this goal is by developing an ontology that not only provides a formal

description of the entities and their properties, but also defines a shared terminology for the

objects of interest in the domain—along with definitions for its terms, processes, and goals. Such

an ontology should be able to capture the collective knowledge of the domain (in this case,

software measurement) in a generic and formal manner, so that it can be reused and shared by

different stakeholders (software engineers, providers, customers, etc.).

These facts motivated us to develop a software measurement ontology (called SMO), which is

presented in Section 2. However, we discovered that merely defining an ontology may not be enough.

Examples and guidelines on how to use it are also needed to illustrate its possible uses and to show its

potential applications. In addition, these examples can serve as a proof of concept for the proposal,

and can also help to evaluate the usefulness of the ontology in a variety of situations and use cases.

In this paper, we present a number of case studies where the SMO has been successfully used:

(1) as a conceptual basis for comparing the terminology used in different proposals (including the

related IEEE and ISO/IEC international standards), with the aim of achieving their harmoniza-

tion; (2) to help in the process of defining a Data Quality Model (DQM) for Web portals; and (3)

to develop a visual Domain-Specific Language (DSL) for software measurement.

In all these case studies, three inter-related but different basic concepts are normally used: ontology,

metamodel, and the conceptual model. In the Software Engineering field there is some confusion

regarding these three concepts, mostly because of the fact that they are normally represented using the

same notations (diagrams), and therefore they are mistakenly considered as synonyms (Assmann et al.,

2006). Here, we follow the ontology definition provided by Gruber (1993): ‘an explicit specification

of a conceptualization’, but adding that such a conceptualization belongs to the problem domain,

whereas metamodels and models, which can be found in M2 and M1 levels of the ‘Meta-Object

Facility’ (MOF) conceptual architecture (OMG, 2006), respectively, belong to the solution domain.

Figure 1 summarizes the relationships between these three concepts, both for the classic modeling

activity and the new metamodeling activity, which is typical in the MDE context.

In this work, we follow the Ruiz and Hilera (2006) taxonomy regarding the different types of

usage of ontologies in the Software Engineering and Technology field:

> Domain Ontologies, which describe the knowledge of the Software Engineering and Software

Technology domains.
> Ontologies as Software Artifacts, which are used as artifacts of several types in software

processes at development time or at run time.

Using this taxonomy, the three case studies presented in this work can be classified as follows:

1. Domain ontologies/software engineering/specific (sub-domain)/software engineering manage-

ment: The SMO is proposed as a vehicle to achieve a consensus on the terminology used in the

software measurement field, which is one of the key aspects of Process Management within the

Software Engineering discipline.

ontology

Model

real-world
system

is based on
/ is filtered by

is a
representation of

real-world
domainis a

conceptualization of
is applied to

whenwhen modelingmodeling
problem
domain

solution
domain

ontology

Model

real-world
system

is based on
/ is filtered by

is a
representation of

real-world
domainis a

conceptualization of
is applied to

whenwhen modelingmodeling

ontology

Model

real-world
system

is based on
/ is filtered by

is a
representation of

real-world
domainis a

conceptualization of
is applied to

whenwhen modelingmodeling
problem
domain

solution
domain

ontology

Metamodel

real-world
of system

is based on
/ is filtered by

is a
representation of

real-world
domain

is a
conceptualization of is applied to

whenwhen metamodelingmetamodeling

problem
domain

solution
domain

ontology

Metamodel

real-world
kind of systems

is based on
/ is filtered by

is a
representation of

real-world
domain

is a
conceptualization of is applied to

whenwhen metamodelingmetamodeling

problem
domain

solution
domain

Figure 1 Relationships between the ontology, model, and metamodel concepts

24 F . GARC Í A E T AL .

2. Ontologies as software artifacts/at development time/for other processes/management

processes: The SMO is used as an artifact to define a special kind of model, namely, a model

for Web portal data quality, by instantiation. The instantiated models are used in the ‘quality

assurance’ management process at software development time. This case study reflects the

‘When modeling’ scenario (left part of Figure 1).

3. Ontologies as software artifacts/at development time/for other processes/management processes:

This last case study reflects the ‘When metamodeling’ scenario (right part of Figure 1). In this case,

the SMO is used as an artifact for designing a metamodel and an associated DSL.

The structure of this paper is as follows: After this introduction, Section 2 summarizes the

SMO. In Section 3, the three aforementioned case studies in which the SMO has been successfully

applied are presented. Finally, some conclusions, lessons learnt, and future lines of work are

outlined in Section 4.

2 The software measurement ontology

The SMO was originally developed to facilitate harmonization efforts in software measurement

terminology (see Section 3.1). The SMO was initially proposed to address the lack of consensus on

Spanish software measurement terms (Garcı́a et al., 2004). Once the Spanish ontology was

defined, it evolved to cope with the English terms too. Finding the correct translation for each

Spanish term became a rather difficult task and was done by comparing the existing standards and

proposals again, selecting the most appropriate terms in each case.

After analyzing several formalisms for representing ontologies, Representation Formalism for

Software Engineering Ontologies (REFSENO) (Tautz & Von Wangenheim, 1998) was chosen to

describe SMO. REFSENO provides constructs to define concepts (each concept represents a class

of experience items), their attributes, and their relationships. Three tables are used to represent

these elements: one with the glossary of concepts, one with the attributes, and one with the

relationships. REFSENO also allows the description of similarity-based retrievals, and incorpo-

rates integrity rules such as cardinalities and value ranges for the attributes, and assertions and

preconditions on the element instances.

REFSENO was used to define SMO for a number of reasons. First, REFSENO was specifically

designed for software engineering, and allows several representations for software engineering

knowledge—whereas other approaches, for example, Uschold and Gruninger (1996); Gómez-Pérez

(1998) and Staab et al. (2001), provide representations that are less intuitive for people not familiar

with first-order predicate logic. Second, REFSENO has a clear terminology, differentiating between

conceptual and context-specific knowledge, thus enabling the management of knowledge coming

from different contexts. REFSENO also helps build consistent ontologies because of the use of

consistency criteria. Unlike other approaches, REFSENO uses constructs from case-based reasoning

(CBR). Finally, REFSENO stores experience in the form of documents, and not as coded knowledge.

This results in an important reduction of the learning effort required, something typically associated

with knowledge-based systems (Althoff et al., 1999).

We also followed the following steps recommended by REFSENO to define the SMO:

1. Define the concept glossary from the knowledge sources.

2. Define the semantic relationships between the concepts by representing them in the Unified

Modeling Language (UML) and create the relationships class tables.

3. Analyze the concepts, that have some kind of relationship in order to identify the

commonalities among two or more concepts, and decide if these commonalities are concepts

(inserted by modeling reasons) and, if so, include them in the glossary of concepts.

4. Identify the terminal attributes of all the concepts and include them in the UML diagrams;

every time a new attribute type is identified, it has to be included in the type table.

5. Complete the attributes concept tables by including the non-terminal attributes.

6. Check the completeness of all the attribute tables.

Effective use of ontologies in software measurement 25

Figure 2 describes the SMO concepts and relationships represented in UML. As shown in the

figure, SMO is organized into four main sub-ontologies: Software Measurement Characterization

and Objectives, which establishes the context and goals of the measurement; Software Measures,

which defines the terminology used in the definition of measures; Measurement Approaches, which

describes the different ways of obtaining the measurement results for the defined measures;

and Measurement, which contains the concepts related to performing the measurement process.

The SMO concepts and their definitions are detailed in Table 1.

Tables 2 and 3 provide, respectively, an excerpt of relationships and attributes tables for the

SMO. A complete description of all the tables can be found in Bertoa et al. (2006). Additionally,

the SMO has been represented using the Web Ontology Language (OWL), and its representation

can be found at http://alarcos.inf-cr.uclm.es/ontologies/smo.

3 SMO case studies

This section describes three usage scenarios of SMO. They serve as illustrative examples of the

possible uses of the ontology. Furthermore, they have helped us to validate the proposal by

tackling several problems of a diverse nature related to software measurement.

3.1 Terminology harmonization

As stated in Section 2, the SMO was initially developed to establish a common vocabulary in the

Software Measurement field, which facilitates interoperability and communication among stake-

holders. For the development of SMO, we analyzed sources from both existing international

standards and research proposals that deal with software measurement concepts and terminol-

ogy—including, among others, the ISO International Vocabulary of Basic and General Terms

in Metrology (VIM) and all related ISO and IEEE standards. As a result, the SMO was built with

a coherent software measurement terminology that has been agreed upon by consensus, and

without contradictions or disparities in the definitions.

The first application of SMO was to provide a thorough comparative analysis of the aforemen-

tioned selected sources with the following goals: (a) to locate and identify synonyms, homonyms,

gaps, and conflicts; (b) to generalize the different approaches to measuring attributes and (c) to

provide a smooth integration of the concepts from the three groups, so that measurement processes

can be built using clearly defined measures, while quality models identify the target and goals of the

measurement processes. The analysis clearly shows all similarities, discrepancies, shortcomings, and

weaknesses in the terminology used in SMO compared with the main standards and proposals.

To illustrate the results of the analysis, Table 4 shows an excerpt of the comparative analysis for

the terms ‘Measure’ and ‘Information Need’. The table index is on the left column (SMO term). Its

second and third columns show, respectively, the source (SMO or standard) where the term appears,

and its definition according to that source. Multiple rows for a given term indicate different (normally

discrepant) definitions. Synonyms are shown in brackets before term definitions. A complete

description of the analysis can be found in Garcı́a et al. (2006).

In general, we found that there is no single standard that embraces the whole area of software

measurement: software measurement concepts are (re)defined in most standards and, normally,

with conflicting definitions. Without an overall reference framework managing these standards,

discrepancies and inconsistencies are commonplace. This fact has been explicitly acknowledged

by most standardization bodies and organizations (including ISO/IEC and the IEEE), which

have started working on the harmonization of software measurement terms. In particular, ISO

has created a working group for the harmonization of Systems Engineering Standards within

its Joint Technical Committee 1 (ISO-JTC1). There is also an agreement in place since the year

2002 between the IEEE Computer Society and ISO/SC7-JTC1 Subcommittee 7 (the one in charge

of software and systems engineering) to harmonize the concepts and terminology used in their

standards, which includes the terminology on measurement.

26 F . GARC Í A E T AL .

Software Measures

Measurement

SM Characterization and Objectives

Measurement Approaches

Measurement Method
(from Measurement Approaches)

Base Measure
(from Software Measures)

1..n

1

1..n

1

uses

Measurement Function
(from Measurement Approaches)

0..n

0..n

0..n

0..n

uses

Derived Measure
(from Software Measures)

0..n

0..n

0..n

0..n

calculated with

0..n

0..n

0..n

0..n

uses

Information Need
(from SM Characterization and Objectives)

Type of Scale
(from Software Measures)

Indicator
(from Software Measures)

1..n

0..n

1..n

0..n

satisfies

Decision Criteria
(from Measurement Approaches)

Measurable Concept
(from SM Characterization and Objectives)

0..n

0..n

0..n

includes

0..n

1

1..n

1

1..n
is associated with

Unit of Measurement
(from Software Measures)Scale

(from Software Measures)

1..n

1

1..n

1

belongs to

Analysis Model
(from Measurement Approaches)

1..n

1

1..n

1

calculated with

1..n

1..n

1..n

1..n

uses

Quality Model

kind
(from SM Characterization and Objectives) 1..n 1..n

evaluates

Measurement Result

value
(from Measurement)

Measurement Approach
(from Measurement)

Attribute
(from SM Characterization and Objectives)

1..n

1..n

1..n

1..n

relates

Measure
(from Software Measures)

0..n 0..n0..n

transformation
0..n 1..n

0..1

1..n

0..1

expressed in

1..n

1

1..n

1

has

0..n1..n 0..n1..n

defined for 1..n

0..n

1..n

0..n

uses

Entity Class
(from SM Characterization and Objectives)

0..n 0..n0..n

includes

0..n

1

n

1

n

defined for

1 1..n1 1..n

has

Measurement

LocationInTime
(from Measurement)

1

1

1

1

produces

1

n

1

n

performs

n

1

n

1

Is performed on

n

1

n

1
uses

Entity
(from SM Characterization and Objectives)

1..n

0..n

1..n

0..n

belongs to

n1 n1

Is performed on

0..n0..n

composed of

Figure 2 UML representation of SMO concepts, attributes, and relationships

E
ffective

u
se

o
f
o
n
to
lo
g
ies

in
so
ftw

a
re

m
ea
su
rem

en
t

2
7

In this respect, the development of an ontology has been shown to be a sound and worthwhile

approach to achieving such terminology harmonization, identifying all concepts, providing precise

definitions for all the terms, and clarifying the relationships among them. In addition, SMO aims

at providing an important communication vehicle to companies when interoperating with others

in the area of software measurement, and also tries to serve as a basis for discussion from where

the software measurement community can start paving the way to future agreements. What we are

completely sure of is that without these agreements, all the standardization and research efforts

may be wasted, and the potential benefits that they may bring to all users (software developers,

ICT suppliers, tools vendors, etc.), may never materialize.

Table 1 Concepts of the SMO

Concept Superconcept Definition

Information need Concept Insight necessary to manage objectives, goals, risks, and problems

Measurable
concept

Concept Abstract relationship between attributes of entities and
information needs

Entity Concept Object that is to be characterized by measuring its attributes

Entity class Concept The collection of all entities that satisfy a given predicate
Attribute Concept A measurable physical or abstract property of an entity that is shared

by all the entities of an entity class

Quality model Concept The set of measurable concepts and the relationships between them,
which provide the basis for specifying quality requirements and
evaluating the quality of the entities of a given entity class

Measure Concept The defined measurement approach and the measurement scale
(a measurement approach is either a measurement method, a
measurement function or an analysis model)

Scale Concept A set of values with defined properties

Type of scale Concept The nature of the relationship between values on the scale
Unit of
measurement

Concept Particular quantity, defined and adopted by convention, with which
other quantities of the same kind are compared in order to express

their magnitude relative to that quantity
Base measure Measure A measure of an attribute that does not depend upon any other

measure, and whose measurement approach is a measurement method

Derived measure Measure A measure that is derived from other base or derived measures, using a
measurement function as measurement approach

Indicator Measure A measure that is derived from other measures using an analysis model
as measurement approach

Measurement
method

Measurement
approach

Logical sequence of operations, described generically, used in quantifying
an attribute with respect to a specified scale. (A measurement method is
the measurement approach that defines a base measure)

Measurement
function

Measurement
approach

An algorithm or calculation performed to combine two or more base or
derived measures. (A measurement function is the measurement
approach that defines a derived measure)

Analysis model Measurement
approach

Algorithm or calculation combining one or more measures with
associated decision criteria. (An analysis model is the measurement
approach that defines an indicator)

Decision criteria Concept Thresholds, targets, or patterns used to determine the need for action or
further investigation, or to describe the level of confidence in a given result

Measurement
approach

Concept Sequence of operations aimed at determining the value of a
measurement result. (A measurement approach is either a

measurement method, a measurement function or an analysis model)
Measurement Concept A set of operations whose objective is to determine the value of a

measurement result, for a given attribute of an entity, using a

measurement approach
Measurement
result

Concept The number or category assigned to an attribute of an entity as a result
of a measurement

28 F . GARC Í A E T AL .

3.2 Defining a data quality model for Web portals using SMO

A Web portal is a site that aggregates information from multiple sources on the World Wide Web,

and organizes this material in an easy and user-friendly manner (Xiao & Dasgupta, 2005). Over

the past decade, the number of organizations that own and maintain Web portals has significantly

grown. These companies and organizations have developed portals to complement, substitute, or

widen the services they provide to their clients, and the way in which they provide them (Yang et

al., 2004). This has resulted in many people using the data obtained from Web portals to carry out

their work and help them make decisions. Thus, the quality of data collected from these portals

should be guaranteed or, at least, evaluated.

To be able to measure the quality of data provided by a Web portal, the first step is to define a

quality model that identifies the main information needs, quality characteristics, measurable

concepts, attributes, measures, etc. This is precisely where ontologies, and in particular the SMO,

can be very useful. The case presented in this section is a DQM for Web portals that focuses on the

data consumer’s perspective, which was developed using the SMO.

The portal data quality model (PDQM) was defined from scratch because of the lack of other

quality models defined for data portals, although some DQMs defined for other contexts were

taken into account—for further details see Caro et al. (2007 and 2008). The first step was

the definition of a theoretical model, named PDQM(t), that contains 33 DQ attributes (Table 5,

right column). This theoretical model was then transformed into an operative one by means of

the probabilistic approach proposed in Malak et al. (2006) which involves Bayesian belief

Table 2 Relationships table for the Measurement Approaches sub-ontology

Name Concepts Description

Uses Base measure—

measurement method

Every base measure uses one measurement method. Every

measurement method defines one or more base measures
Calculated with Indicator—analysis model Every indicator is calculated with one analysis model. Every

analysis model may define one or more indicators

Calculated with Derived measure—
measurement function

Every derived measure is calculated with one measurement
function. Every measurement function may define one or
more derived measures

Satisfies Indicator—information
Need

An indicator may satisfy several information needs. Every
information need is satisfied by one or more indicators

Uses Measurement function—

base measure

A measurement function may use several base measures.

A base measure may be used in several measurement
functions

Uses Measurement function—
derived measure

A measurement function may use several derived measures.
A derived measure may be used in several measurement

functions
Uses Analysis model—measure An analysis model uses one or more measures. A measure

may be used in several analysis models

Uses Analysis model—decision
criteria

An analysis model uses one or more decision criteria. Every
decision criteria is used in one or more analysis models

Table 3 Attributes table for the Measurement sub-ontology

Concept Attribute Description Type Card.

Measurement Location in

time

Time instant where measurement

is carried out

Time/date 1

Measurement result Value Value which represents the result
of the measurement action

Variant 1

Effective use of ontologies in software measurement 29

Table 4 Comparison of some terms in the ‘software measures’ sub-ontology

Term Source Definition

Measure SMO The defined measurement approach and the measurement scale.

(A measurement approach is either a measurement method, a
measurement function or an analysis model)

14598-1 [Metric] The defined measurement method and the measurement scale

610.12 [Metric] A quantitative measure of the degree to which a system,
component, or process possess a given attribute

IEEE 1061 [Metric] A function whose inputs are software data and whose

output is a single numerical value that can be interpreted as the
degree to which software possesses a given attribute that affects
its quality

Base measure SMO A measure of an attribute that does not depend upon any other
measure, and whose measurement approach is a measurement
method

VIM [Base quantity] One of the quantities that, in a system of

quantities, are conventionally accepted as functionally independent
of one another

15939 Measure defined in terms of an attribute and the method for

quantifying it. (Note: a base measure is functionally independent of
other measures)

14598-1 [Direct measure] Measure of an attribute that does not depend upon

a measure of any other attribute
IEEE 1061 [Direct metric] A metric that does not depend upon a measure of any

other attribute
Derived measure SMO A measure that is derived from other base or derived measures, using

a measurement function as measurement approach
VIM [Derived quantity] Quantity defined, in a system of quantities, as a

function of base quantities of that system

15939 Measure that is defined as a function of two or more values of base
measures

14598-1 [Indirect measure] A measure of an attribute that is derived from

measures of one or more other attributes
Indicator SMO A measure that is derived from other measures using an analysis

model as measurement approach

15939 An estimate or evaluation of specified attributes derived from a
model with respect to defined information needs

14598-1 A measure that can be used to estimate or predict another measure

Table 5 Data quality attributes of PDQM

Data quality category Data quality attributes

Intrinsic: Denotes that data has quality in its
own right

Accuracy, objectivity, believability, reputation,
currency, duplicates, expiration, and traceability

Accessibility: Emphasizes the importance of
the role of systems, i.e., the system must be
accessible but secure

Accessibility, security, interactivity, availability,
customer support, ease of operation, and response time

Contextual: Data quality must be considered in
the context of the task in hand

Applicability, completeness, flexibility, novelty,
reliability, relevancy, specialization, timeliness,
validity, value-added

Representational: The system must present
data so that it is interpretable and easy to
understand, as well as concisely and

consistently represented

Interpretability, understandability, concise
representation, consistent representation, amount of
data, attractiveness, documentation, and organization

30 F . GARC Í A E T AL .

networks (BBN), indicators, measures, and fuzzy logic. As a result, a BBN was built, which

represents, in a hierarchical structure, the DQ attributes of PDQM according to the categories

shown in Table 5, adapted from the proposal of Wang and Strong (1996)—the most widely

known model among those that are currently available within the DQ field, and which is used as a

‘de facto’ standard.

To provide inputs for the entry nodes of the BBN, some quality indicators were required. The

SMO was also used for this purpose. To illustrate the application of SMO in this case, we describe

here the definition of the DQ_Representational part. The corresponding BBN is shown in Figure 3.

To develop this BBN, we started by connecting the quality attributes to the final node,

which represents the category we want to measure. Synthetic nodes were added to the network to

reduce the number of parents of each node (nodes with more than four parents should generally

be avoided in BBNs; the introduction of synthetic nodes is recommended in these cases). Then we

defined quantifiable variables for the entry nodes (input nodes) of the network, and finally we

established a Node Probability Table (NPT) for each node.

The use of SMO was fundamental for the definition of measures for the quantifiable variables

of entry nodes. One indicator was defined for each entry node (upper nodes in Figure 3), on the

basis of the aggregation of several base and derived measures. The calculation methods for these

measures were automated, so that input figures for the entry nodes of the network could be

computed objectively by a tool for any given portal.

Table 6 provides the description of the Model for the DQ_Representational fragment of the

Quality Model. It shows the instances of the Characterization and objectives sub-ontology of the

SMO. Tables 7 and 8 provide the definition of the base and derived measures, respectively.

The indicators required to satisfy the information need of the PDQM measurement model were

obtained through the aggregation (using an analysis model) of the appropriate base and derived

measures. For example, the ‘Level of Consistent Representation (LCsR)’ indicator evaluates the

extent to which data is always presented in the same format, is compatible with previous data, and

is consistent with other sources (i.e., it measures the ‘consistent representation’ attribute of Web

portals). The measures used to obtain this indicator are based on the presentation styles of the

portal Web pages (PSSD), and on the correspondence between the text used in the source link and

the destination page (SDCD) (see Table 8). The analysis model for the LCsR indicator is shown on

the left-hand side of Table 9.

All our indicators (and in particular the one we are showing here, LCsR) are numerical values

between 0 and 1, to simplify the definition of probabilities and to normalize their values. These

values were later converted into discrete variables using fuzzy logic and membership functions that

transform the indicator values into a set of probabilities, each of them corresponding to a label/

class. As an example of such membership functions, the right part of Table 9 shows the decision

criteria defined for the LCsR indicator, which permits to derive a value (low, medium or high)

from the initial value of the indicator. These probability values are known as ‘evidences’, and are

propagated through the network through causal links (applying the corresponding probability

tables defined for the intermediate nodes), until the level of representational DQ in the Web portal

is finally obtained.

This process has been automated using a tool named PoDQA. The tool asks for the URL of a

portal and then applies the defined measures and indicators on its pages and elements. The results are

transformed (also by the tool) as valid values for the Bayesian Network input nodes. After this, the

network is re-calculated using the new evidences for the entry nodes, and the DQ evaluation level is

generated. The PoDQA tool is available at http://podqa.webportalquality.com.

The use of SMO for defining the base, derived, and indicator measures of the PDQM model

brings significant advantages. First, the measures can be properly defined, that is, without

ambiguity and in a complete and objective manner. Second, a proper definition of the measures,

including a detailed description of their calculation methods, enables and facilitates their imple-

mentation. This was essential in our case because one of our objectives was to define a DQM with

fully automated tool support.

Effective use of ontologies in software measurement 31

0.90.60.20.60.30.050.20.050.01Good

0.090.250.30.250.40.150.30.150.09Medium

0.010.150.50.150.30.80.50.80.9Bad

GoodMedi
um

BadGoodMedi
um

BadGoodMedi
um

BadAmount
of Data

GoodMediumBadDocumen
tation

0.90.60.20.60.30.050.20.050.01Good

0.090.250.30.250.40.150.30.150.09Medium

0.010.150.50.150.30.80.50.80.9Bad

GoodMedi
um

BadGoodMedi
um

BadGoodMedi
um

BadAmount
of Data

GoodMediumBadDocumen
tation

0.650.080.08High

0.330.80.22Medium

0.020.120.7Low

GoodMedi
um

BadOrganiza
tion

0.650.080.08High

0.330.80.22Medium

0.020.120.7Low

GoodMedi
um

BadOrganiza
tion

0.820.120.08Good

0.140.80.12Medium

0.040.080.8Bad

HighMedi
um

LowLCsR

0.820.120.08Good

0.140.80.12Medium

0.040.080.8Bad

HighMedi
um

LowLCsR
Probability Table of Attractiveness

Probability Table of Volume of data

Probability Table of Consistent Representation

DQ_Representational

Attractiveness

Understandability

Representation

Consistent
Representation

Concise
Representation Volume of Data

Documentation

Organization

Interpretability

Amount of Data

LCsR

LCcR

LD
LAD

LI

LO

Indicators that return
numerical value for the
input-nodes:

Indicators that return
numerical value for the
input-nodes:

Figure 3 Bayesian network for the DQ_Representational category

3
2

F
.

G
A
R
C
Í
A

E
T

A
L
.

3.3 Developing a DSL for software measurement

In any mature engineering discipline, models are the core artifacts that allow the design and

development of prototypes first, and then of the complete engineering system (Sprinkle et al.,

2001). The new MDE paradigm follows this approach for designing and building software

systems (Bézivin et al., 2005). The Model-Driven Architecture (MDAs) is the OMG proposal for

implementing MDE principles and practices (OMG, 2003). In MDA, as in MDE, models are the

Table 6 DQ_Representational measurement model: characterization and objectives instance

Concept PDQM instances

Information need To know the level of the representational data quality of a Web portal

Measurable concept Representation, understandability, attractiveness
Entity class Web portal
Entity Web portal of the University of Castilla-La Mancha, Web portal of the

University of Malaga
Attribute Concise representation, consistent representation, documentation, amount

of data, interpretability, and organization

Quality model PDQM

Table 7 DQ_Representational base measures

Name Measure Unit Scale
Type
of scale Description

Measurement
method

PgC Page count Pages Natural
number

Ratio Number of pages in the
portal

Counting the
pages

StPgCs Pages with

style S count

Pages Natural

number

Ratio Number of pages in the

portal with a given
style S

Counting the

pages with
style S

LnC Link count Links Natural
number

Ratio Number of links used in
the portal

Counting the
links

LTC Link text
correspondence

Links Natural
number

Ratio Number of links with
common words between
the text of the link and the

text of the destination page

Counting the
links with
common

words

Table 8 PDQM derived measures

Name Measure Unit Scale
Type
of scale Description

Measurement
method

MaSS Number of pages
with the most
used style

Pages Natural number Ratio Maximum of pages
with the same style

max(8i, StPgCi)
being i each of
the styles used

by the portal
SDCD Source–destination

correspondence

degree

Pages Real number
between 0

and 1

Ratio Correspondence
degree between

source and
destination pages
in a portal

LTC/LnC

PSSD Pages with the
same style degree

Pages Real number
between 0
and 1

Ratio Degree to which the
portal pages have
the same page style

MaSS/PgC

Effective use of ontologies in software measurement 33

essential artifacts, used to direct the course of understanding, design, construction, testing, deploy-

ment, operation, maintenance, and modification of systems. MDA raises the level of abstraction by

enabling specifications that use different models to focus on different concerns, and by automating

the production of such specifications and the software that meets them. In particular, MDA dis-

tinguishes between platform-independent models and platform-specific models. In addition, MDA

permits the definition of further models of the system, each one focusing on a specific concern, and at

the appropriate level of abstraction. These specific models are described using DSLs and related by

model transformation (MT) specifications, which act as viewpoint correspondences.

In the context of MDE, domain-specific modeling (DSM) is a way of designing and developing

systems, which involves the systematic use of DSLs to represent the various facets of a system.

Such languages tend to support higher-level abstractions than general-purpose modeling

languages, and are closer to the problem domain than to the implementation domain. Thus, a

DSL follows the domain abstractions and semantics, allowing modelers to perceive themselves as

working directly with domain concepts. Furthermore, the rules of the domain can be included in

the language as constraints, preventing the specification of illegal or incorrect models. In general,

defining a modeling language involves at least two aspects: the domain concepts and rules

(abstract syntax), and the notation used to represent these concepts (concrete syntax—be it textual

or graphical). Each model is written in the language of its metamodel (we normally say that a

model conforms to its metamodel). Thus, a metamodel will describe the concepts of the language,

the relationships between these concepts and the structuring rules that constrain the model

elements and their combinations, in order to respect the domain rules.

MDA is based on a set of OMG standards, among which the MOF allows the specification of

metamodels and defines a conceptual architecture with four levels of abstraction (OMG, 2006). At the

lowest level (M0) we have the instances of the models, which represent the real-world entities. Then we

have the model level (M1), which allows describing system models. Metamodels live at the M2 level,

and define the languages in which models are written. But metamodels are also models, and therefore

they need to be written in another language, which is described by its meta-metamodel. This recursive

definition normally ends at that level (M3), as meta-metamodels conform to themselves.

In recent years, we have been working on a project the main goal of which was to develop a

framework (called SMF) to support the software measurement process, using the MDE principles

and ideas (Garcı́a et al., 2007; Mora et al., 2008). Thus, we distinguish between the problem

domain (the software measurement domain) and the solution domain (the tools that measure

software products and processes in a generic and automated way) in the SMF framework.

Assmann et al. (2006) provide a detailed proposal of the different roles played by ontologies and

metamodels from a perspective based on the MDE paradigm. In that context, the core element of

the SMF framework in the problem domain side is the SMO, whereas from the perspective of the

solution domain, a software measurement metamodel (SMM) has been developed.

Table 9 LCsR analysis model

LCsR (Level of Consistent Representation)

Formula Decision criteria

LCsR5PSSD*0.51 SDCD* 0.5

34 F . GARC Í A E T AL .

The SMM provides the abstract syntax for the language. To provide the concrete syntax we

developed a textual and graphical notation for describing measurement models (what to measure,

how, who, when, etc.), in the easiest possible way. This language is called the Software Measurement

Modeling Language (SMML) and is based on the original concepts defined in the SMO, that is,

the SMO has been the conceptual basis during the development of the language. This approach to

defining DSLs is in line with the basic principles of DSM, and follows the recommendations of

several experts in this field, such as Mernik et al. (2005), who state that the development of a DSL

requires both domain knowledge and language development expertise; and Denny (2003), who

thinks that ontologies are potentially useful when developing DSLs during the analysis phase,

where knowledge capture and knowledge representation are the key elements.

The package structure of the SMM metamodel that provides the abstract syntax for SSML is

shown in Figure 4. The metamodel is organized around four packages. All the constructors of the

Measurement metamodel have been obtained from the concepts of SMO, with the exception of the

concepts of the Measurement Action sub-ontology. The fact that we have been able to reuse all

the concepts of SMO has allowed us to save considerable effort. In addition, our metamodel

is fully aligned with an ontology already tested and validated, therefore allowing us to build a

robust metamodel. Furthermore, the resulting metamodel can seamlessly interoperate with other

languages and tools on the basis of the same ontology: for example, with the SLAMMER

language defined by Guerra et al. (2008), which also uses SMO as a conceptual basis to define a

visual DSL for software measurement. This language is part of the suite of model management

tools that Guerra et al. have defined using graph grammars and graph transformations, in which

the evaluation and measurement of software artifacts is an essential element.

Some of the concepts of SMML (namely, those defined in the Measurement Action metamodel)

do not come from the SMO, because these concepts belong to the domain of the execution of the

measurement process. It is important to note that the SMO deals with those concepts related to the

definition and specification of software measures, but does not include others, such as those

concepts related to the measurement process execution. This is why SMM extends the SMO with

some new concepts. The fact that this extension is conservative with respect to the original

ontology (i.e., it just adds new elements, but respects the structure, semantics, and relationships of

the original one) guarantees that the interoperability with the methods, tools, and proposals that

make use of the original ontology is maintained.

The SMM supports the graphical language to represent software measurement models in an

intuitive manner. Table 10 shows some of the most representative graphical elements of SMML.

An example of the representation of a measurement model with SMML is illustrated in Figure 5,

where the measurement model for Web portals (described in Section 3.2) is graphically represented.

After examining diverse tools and considering existing analysis (Pelechano et al., 2006), SMML

has been implemented using the GMF Eclipse Project (Eclipse Graphical Modeling Framework

(GMF), 2007) that supports the definition of graphic DSL editors. SMML satisfies the expected

requirements of DSL (Kolovos et al., 2006) as follows:

Conformity: The language constructs correspond to relevant domain concepts.

Orthogonality: Each construct in the language is used to represent exactly one distinct concept in

the domain.

Supportability: SMML is supported by tools including Microsoft DSL tools and GMF.

Integrability: SMML and its tools can be used in concert with other languages and tools with

minimal effort (e.g., SLAMMER, as mentioned before). This is because of the way in which it has

been defined and implemented, using SMO as its conceptual base.

Longevity:We hope SMML will be used long enough to justify its definition; the feedback from its

initial users seems to support this claim, but it remains to be seen.

Simplicity: The language has been defined as simply as possible in order to express the concepts of

interest, and to support the users and stakeholders in their preferred ways of working, avoiding

unnecessary complexity.

Effective use of ontologies in software measurement 35

Characterization and
Objectives

Basic

Measurement
Approaches

Measures

Description
name : String
content : String

Measurement Approach
(from Measurement Action)

Measurement Result
(from Measurement Action)

Information Need
(from Characterization and Objectives)

Quality Model
(from Characterization and Objectives)

Decision Criteria
(from Measurement Approaches)

Scale
(from Measures)

Entity Class
(from Characterization and Objectives)

Measurable Concept
(from Characterization and Objectives)

Measurement
(from Measurement Action)

Attribute
(from Characterization and Objectives)

Measure
(from Measures)

Aggregation Dependency

Association
Non Navigable Association

Measurement Association
name

Measurement Element
name

source

target

Figure 4 Overview of the software measurement metamodel

3
6

F
.

G
A
R
C
Í
A

E
T

A
L
.

Quality: The language has been designed to provide some mechanisms for ensuring system quality,

enforcing, for example, that all defined measures are properly and completely constructed.

Scalability: This is provided by SMML supporting tools.

Usability: DSL constructs have been designed to be expressive and easy to understand.

In summary, SMO has been extremely useful for the development of both SMM, which is being

used to implement tools that manage software measurement models, and SMML, which is aimed

at software measurement engineers. Furthermore, SMO has been the key to ensuring that the DSL

fulfils the conformity, orthogonality, and simplicity requirements. Usability will be validated in

future work by developing experiments where expert engineers in the field of software measure-

ment will participate.

4 Conclusions and future work

It is our claim that creating an ontology for software measurement will enable the collection of the

agreed knowledge in this domain and will allow agreements to be reached, something that is still

Table 10 selection of the SMML elements and icons

Ontology concept
Metamodel
constructor SMML icon Ontology concept

Metamodel
constructor SMML icon

— Description Base measure Base
measure

Information need Information
need

Derived measure Derived
measure

Entity class Entity class Indicator Indicator

Attribute Attribute Scale Scale

Quality model Quality model Unit Unit

Measurable
concept

Measurable
concept

Measurement
method

Measurement
method

Measurement

function

Measurement

function

Analysis model Analysis

model

Effective use of ontologies in software measurement 37

____________ ??

To know the level of
the representational
data quality of a web

portal

Representation
Web portal

DQ Representational

Consistent_Representation

Natural
numbers

[0-)

Pages

Pages Count
(PgC)

Counting the
pages

Natural
numbers

[0-)
Links

Link Count
(LnC)

Counting
the links

Natural
numbers

[0-)
Links

Link Text
Correspondence

(LTC)

Counting
the links

with
common

words

Natural
numbers

[0- Pages

Source Destination
correspondence degree

(SDCD)

LTC/LnC

Natural
numbers

[0- Pages

Pages with the Same
Style Degree (PSSD)

MaSS/PgC

Understandability

Attractiveness

LCsR =
PSSD*0.5+
SDCD*0.5

Natural
numbers

[0-
Pages

Level of Consistent
Representation

(LCsR)

Natural
numbers

[0-)
Pages

Pages with the
styles Count

(StPgCs)

Counting the
pages with
the given

styles

Natural
numbers

[0-) Pages

Number of
pages of the
most used

style (MaSS)

MAX
(i,

StPgCi)

Figure 5 Measurement model of PDQM represented with SMML

3
8

F
.

G
A
R
C
Í
A

E
T

A
L
.

far from being achieved in this field. In this sense, SMO can serve as a basis for discussion to

achieve the necessary consensus and to contribute to the harmonization of existing (and future)

standards and proposals within the software measurement domain. Furthermore, it can be used as

a vehicle for achieving the interoperability required between the ever-increasing number of groups

and organizations working on languages and tools for software measurement.

In the case studies presented in this paper, we have seen different use cases for the SMO where it

has shown its usefulness. In the first case, the ontology has served as the basis for comparing and

analyzing the terminology used in several international standards related to software measure-

ment, and it has been put forward as a reconciling proposal for reaching future agreements. The

second case makes use of SMO to define a quality model for Web portal data. The SMO allowed

us to identify and define all the elements of the quality model, from the information needs and

measurable concepts, to the base and derived measures used to evaluate the quality attributes.

In this example, BBN were used to measure the quality characteristics of the model, using the

values of the indicators as input evidences. SMO allowed defining, without ambiguity, the base

and derived measures that were used to synthesize the indicators, making them amenable to

automation. The last case study shows the development of a SMM and a textual and graphical

concrete syntax for it (the SMML language), which allows representing software measurement

models. The SMO has been used as a conceptual model during the development of this language.

Our future plans for SMO include its integration and alignment with the new and revised terms

of VIM 3.0, in order to be fully compatible with the way in which most science and engineering

disciplines deal with Measurement. In addition, the SMO may need to evolve in order to take into

consideration the new versions of ISO and IEEE standards (e.g., ISO/IEC 15939, ISO/IEC 25000

(SquARE), etc.). These actions are aimed at maintaining a complete and up-to-date ontology, that

can offer a useful reference for software measurement, and a framework for harmonizing the

terminology used in this domain.

We are also conducting new case studies in which the ontology is used as a Software Artifact.

This will allow us to obtain useful feedback for future improvements of the ontology. In the same

spirit, we plan to thoroughly validate the visual language SMML through a family of experiments,

with the aim of verifying its usability and full applicability in this context.

Acknowledgements

We thank Prof. Alain Abran for his useful suggestions and comments, which have helped us to

improve the first versions of the ontology. We are also grateful to the anonymous reviewers of this

work, for their valuable and detailed comments. This work has been funded by the following research

projects: ESFINGE (TIN2006-15175-C05-05), MECENAS (PBI06-0024), MOVIS (P07-TIC-03184),

IVISCUS (PAC08-0024-5991), VIASCO (PET2006-0682-00), CALIPSO (TIN2005-24055-E) and

TIN2005-09405-C02-01.

References

Althoff, K., Birk, A., Hartkopf, S. & Muller, W. 1999. Managing software engineering experience for
comprehensive reuse. In Proceedings of the International Conference on Software Engineering (ICSE’99).

Kaiserslautern, Germany.
Assmann, U., Zschaler, S. & Wagner, G. 2006. Ontologies, meta-models, and the model-driven paradigm. In

Ontologies for Software Engineering and Technologies, Calero, C., Ruiz, F. & Piattini, M. (eds). Springer-

Verlag, 49–102.
Bertoa, M., Garcı́a, F. & Vallecillo, A. 2006. An ontology for software measurement. In Ontologies for

Software Engineering and Technologies, Calero, C., Ruiz, F. & Piattini, M. (eds). Springer-Verlag,
175–196.

Bézivin, J., Jouault, F. & Touzet, D. 2005. Principles, standards and tools for model engineering. In Pro-
ceedings of the 10th IEEE International Conference on Engineering of Complex Computer Systems
(ICECCS’2005). IEEE Computer Society, Shanghai, China, 28–29.

Caro, C., Calero, C. & Piattini, M. 2007. Development of the operational version of PDQM. In Proceedings
of the 8th International Conference on Web Information Systems Engineering (WISE 2007). France.

Effective use of ontologies in software measurement 39

Caro, C., Calero, C., Caballero, I. & Piattini, M. 2008. A proposal for a set of attributes relevant for Web

portal data quality. Software Quality Journal 16(4), 513–542.
Denny, M. 2003. Ontology Building: A Survey of Editing Tools. Available at http://www.xml.com/

pub/a/2002/11/06/ontologies.html
Eclipse Graphical Modeling Framework (GMF). 2007. Available at http://www.eclipse.org/gmf/
Garcı́a, F., Ruiz, F., Bertoa, M., Calero, C., Genero, M., Olsina, L. A., Martı́n, M. A., Quer, C., Condori,

N., Abrahao, S., Vallecillo, A. & Piattini, M. 2004. An Ontology for Software Measurement. Technical

report, UCLM DIAB-04-02-2, Computer Science Department, University of Castilla-La Mancha, Spain.
Garcı́a, F., Bertoa, M., Calero, C., Vallecillo, A., Ruiz, F., Piattini, M. & Genero, M. 2006. Towards a

consistent terminology for software measurement. Information and Software Technology 48(8), 631–644.

Garcı́a, F., Serrano, M., Cruz-Lemus, J., Ruiz, F. & Piattini, M. 2007. Managing software process measurement:
a metamodel-based approach. Information Sciences 177, 2570–2586.

Gómez-Pérez, A. 1998. Knowledge Sharing and Reuse. CRC Press.
Gruber, T. R. 1993. A translation approach to portable ontologies. Knowledge Acquisition 5(2), 199–220.

Guerra, E., de Lara, J. & Dı́az, P. 2008. Visual specification of measurements and redesigns for domain
specific visual languages. Journal of Visual Languages and Computing 19(8), 399–425.

Kolovos, D. S., Paige, R. F., Kelly, T. & Polack, F. A. C. 2006. Requirements for Domain-Specific

Languages. In First ECOOP Workshop on Domain-Specific Program Development (ECOOP’06). Nantes,
France.

Malak, G., Sahraoui, H., Badri, L. & Badri, M. 2006. Modeling Web-based applications quality: a prob-

abilistic approach. In Proceedings of the 7th International Conference on Web Information Systems
Engineering, Lecture Notes in Computer Science 4255, 398–404. Springer.

Mernik, M., Heering, J. & Sloane, A. M. 2005. When and how to develop domain-specific languages. ACM
Computing Surveys 37(4), 316–344.

Mora, B., Garcı́a, F., Ruiz, F., Piattini, M., Boronat, A., Gómez, A., Carsı́, J. & Ramos, I. 2008. Proceedings
of the Tenth International Conference on Enterprise Information Systems (ICEIS2008), Volume DISI,
Barcelona, Spain, 117–124.

Object Management Group (OMG). 2003. MDA Guide, Version 1.0.1, June 2003. Available at http://
www.omg.org/mda/specs.htm

Object Management Group (OMG). 2006. Meta Object Facility (MOF) Core Specification, Version 2.0,

January 2006. OMG document formal/2006-01-01. Available at http://www.omg.org/docs/
formal/06-01-01.pdf

Pelechano, V., Albert, M., Javier, M. & Carlos, C. 2006. Building tools for model driven development

comparing microsoft DSL tools and eclipse modeling plug-ins. In Proceedings of Desarrollo de Software
Dirigido por Modelos—DSDM’06. Sitges, Spain.

Ruiz, F. & Hilera, J. R. 2006. Using ontologies in software engineering and technology. In Ontologies in
Software Engineering and Software Technology, Calero, C., Ruiz, F. & Piattini, M. (eds). Springer-Verlag,

49–102.
Sprinkle, J. M., Ledeczi, A., Karsai, G. & Nordstrom, G. 2001. The new metamodeling generation. In

Proceedings of the 8th Annual IEEE International Conference and Workshop on the Engineering of Com-

puter Based Systems, 275–279.
Staab, S., Schnurr, H. & Sure, Y. 2001. Knowledge processes and ontologies. IEEE Intelligent Systems 16(1),

26–34.

Tautz, C. & Von Wangenheim, C. 1998. REFSENO: A Representation Formalism for Software Engineering
Ontologies. Technical report, N 015.98/E, version 1.1. Fraunhofer IESE.

Uschold, M. & Gruninger, M. 1996. Ontologies: principles, methods, and applications. Knowledge Engi-
neering Review 11(2), 93–196.

Wang, R. & Strong, D. 1996. Beyond accuracy: what data quality means to data consumers. Journal of
Management Information Systems 12, 5–33.

Xiao, L. & Dasgupta, S. 2005. User satisfaction with Web portals: An empirical Study. In Web Systems

Design and Online Consumer Behavior, Gao, Y. (ed.). Idea Group Publishing, 193–205.
Yang, Z., Cai, S., Zhou, Z. & Zhou, N. 2004. Development and validation of an instrument to measure user

perceived service quality of information presenting Web portals. Information and Management 42,

575–589.

40 F . GARC Í A E T AL .

